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~~ 1. " ÄT^tÄll«toT and stumor* invariant quanfcitiaa, i.e. quantities, 

uategcing. »l.tly«ly little charting «otioa with «otae velocity, Ms 

for « loot tlM oeeuplrf a 1«* pi«« i» •atawological litigations.    It 

foil««, to racogaisa this ** ^uit. natural, since the basic properties* of a 

process on the w large .«la are characterised by the*« (factors), na**iy 

«tot quantities ippor to be invariant and what 1* th* advection velocity of 

tfcssse invariant quanfeitieu.. 

.        "       If I* well ka««t ho* great the practical significance of "conservative" 

quantity« (which appear, evidently, •• one ofke £ow of the invariaat 

qoaneltl«») i« 1» the analysis eC attsaapharic processes.    IK i* ««*fiel«« 

*   to polftt to 'th* application of potential and equivalent-potential tempera- 

ture i» ti»w>4y»a»lea of the atrcosph^e, and to numerous applications of 

Bernoulli«* aquation, the purpose of which eoniliu in th* ceteraination 

ö£ a coasarvative, quality for established processes, taking place la •« 

,.      ia&espassifele ideal fluid os In & barotrepie ideal ««dim. 

Is is'knotm that th« quantity 

2  *".// * J ft?) 
'uhara V^ Is th« velocity,  4. 1« the acceleration of gravity, y? U 

pressure and f       is the density of th« air, does not remain strictly constant 

aisag eha Una« of flow (just by virtue of the presence of viscosity, not to 

Nation other «fleet«). Heverthales«, the application of the Bernoulli 

•ViatioB together with the condition of conservation of potential temperature 



permits us•to solve/ quite sufficiently for practical accuracy, a great 

number of aerodynamic, 'technical and meteorological problems. To find a 

dynamic characteristic, which is conserved during non~stationary 

atmospheric processes with approximately the same degree of accuracy as 

the quantity Q      during established processes, means it would 

considerably facilitate many meteorological investigations. However, until 

recently, almost all the accomplished transformations of the dynamic equa- 

tions of the atmosphere for the purpose of the establishment of Invariant 

quantities has been based on serious simplifications of the actual relatic 

between meteorological quantities. As a result the properties of the 

A/££* 
invariance of such quantities >£ realized only highly approximately. 

The work of Charney [8], who approached quite close to the determine 

of an invariant, the expression for which is given later [formula (13)], i 

of significant interest. However, as far as a suitable conclusion realize 

with the neglect of terms of the equations of the first order of smallness 

tacts« relation (13) defines a quantity, invariant only as a first approxim? 

VJe shall see shortly, that quantities of the first order of smallnes 

usually constitute 15-20% of the main terms of the equations, so-that the 

neglect of.several such terms can lead to relatively significant errors. 

the present work special transformations ofythe equations are realized, whi 

permit us to obtain an invariant of the second approximation, i.e. limit 

ourselves to neglect of terms of the second order of smallness. But 

first it is necessary to make the concept of large scale atmospheric 

processes more precise and to examine the basic characteristics of their 

relation. ,  * 

2. First of all, let us note, that for the classification of 

atmospheric motions the criteria of Reynolds and Froude (which are usual}; 
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employed for this purpose in hydromechanics) prove to be useless. For all 

atmospheric motions studied by dynamic meteorology, the Reynolds number 

is very great and on the strength o£ this it appears possible, to neglect 

the molecular viscosity (with the exception of the air film, of thickness 

of the order of a millimeter, Which directly borders the underlying surfac.. 

The Froude number, in almost all the motions considered in dynamic 

meteorology (excepting hurricanes, tornadoes, etc.. and also motion in 

cumulus clouds) is very small. Therefore, practically, it: is possible 'to 

consider the vertical component of the inertia force as a small addition tc 

the force of gravity, while in a majority of cases these additions are 

siraply neglected. For that reason, in the nature of a fundamental 

criteria for the classification of atmospheric motions, it is suitable to 

use the ratio of the horizontal components relative to the Coriolis 

acceleration of the air particles. 

Introducing the designations: 

U     is the horizontal velocity of the air motion 

relative to the earth, L~      is the scale of the notion, 

£ --=• JLC& 5/n p      }  where CO    is the angular velocity 

of the earth's rotation,   u)     is latitude, 0 C   is 

the ratio of the above mentioned accelerations, we obtain 

a) De=;^\' /(/=  Jl. 

We shall call the motion, in which the relative acceleration appears 

to be determined for  [  L   *~£~    ~][ ) t   small-scale; motion, in which the 

Coriolis acceleration appears to be determined for  { /_ yy    ■■# J , 

large scale and, finally, motion, in which both the accelerations consider-: 

-3- 



have the same order, medium-scale. For a quantitative estimation of the 

characteristic scales of the three classes of motion mentioned, it is 

necessary to remember, that the quantity U       has been related to L 

[5]. 

Carrying out the corresponding estimations, it is possible to convinc 

yourself, that outside equatorial regions, motions of scales up to 100 mete: 

inclusively, as a rule, are regarded as small-scale; motions of scales of 

kilometers and tens of kilometers (in particular, breezes) — medium-scale 

and hundreds and thousands of kilometers — large-scale. 

Considering, that -~      represents the characteristic value of the . 

vertical component of relative vorticity _/l_     >  i1: is still possible to 

write down the .criteria for large-scale processes in such a form 

(2) SL      J  S     I 
£       ^ ^ l 

Let us note that jt      represents the vertical component of the 

vorticity of the fundamental motion (vorticity of the earth's rotation^?/- 

Trans.).- Therefore large-scale motion is characterized by that condition. 

that the vertical component of the vorticity of the fundamental motion of 

particles many times exceeds the vertical component of the relative vortici 

Condition (1) is often used for the simplification of the dynamic 

equations of the atmosphere, geginning with the known work of Kibel L3]. 

Here in the Fridinan equation for the change of vorticity terms of the firs 

order of smallness are neglected (i.e. quantities, the ratio of which to I 

main terms of the equation have the order ~j ) and correspondingly ir; 

the equations of horizontal motion quantities of the second order of 

smallness. For such simplifications it proves to be possible to obtain c 

the invariant of the first approximation, so that we shall have to carry o 
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a more detailed analysis of the smallness of the various quantities. 

3.  In the work [6], an estimation of the terms of the equations of 

horizontal motion and heat flow was made, and also considered were the twc: 

equations, obtained by the application of the voriicity and divergence 

operation to the vector equation for horizontal acceleration. From carry: 

out the analysis further the following conclusions are of interest. 

(a) It is possible to take the characteristic value orAhe  ratio  ■ 

equal to 0.2 for macro-scale motion for the characteristic length L 

the order of'300-500 km. Further, quantities, having the order  -^r 

we shall designate through  c- ■ 

(b) The ratio of the divergence of the horizontal velocity Jx 

to £    produces a value of second order of smallness, i.e. 

o[jl%+ %)]-£' 
( Olfl   —   order of the quantity r J 

(c) The ratio of the quantities 

inhere  Vs   is the horizontal component of velocity ( U-   ex   V)   , 5 

is the horizontal coordinate ( X CA  V /      ,   2       is height, W,    "is 

vertical velocity,"   * ~~ is a quantity the order of O       . However 

the quantities  W ~T       and ^ ■2-~,  have the same order in the free 

atmosphere. 

(d) Neglect of turbulent friction for the macro-scale motions stu 

in the free atmosphere seems to be in general sufficiently justified. 
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Proceeding from the last conclusion, in the future let us consider 

the equations of an ideal fluid. Let us also regard the motion in the 

free atmosphere as adiabatic, leaning on the fact of the smallness of heat 

flow, shown by C. C. Gaigerov and V. G. Kastrov [l], [2] on the basis of 

data of special free-balloon investigations. Thus, the invariance of 

potential temperature is assumed from the very beginning. Let us take 

advantage of the dynamic equations of the atmosphere in the, variables t" 

(time), X     (the ^     axis is directed toward the east),  tf (the u 
p 

axis is directed toward the north), yf'=
:   p (the ratio of the 

presHure to its standard value     P a=s 1000 mb). 1'he horizontal component 

of velocity LI,   V, the geopotential (ßz: ]§-**£-     , the potential 

temperature  0       and the quantity   ^     , equal to ■'. 

appear as the unknown functions. 

Hare . \/J      is the veritcal velocity and J>     is the density of the 

air. The quantity W      is proportional to the individual change of 

pressure [ #-~    % at)- 

The system of equations which interests us have been encountered often 

recently in investigations by dynamic meteorology (see, for example, [7], 

»here it was also indicated by way of a conclusion). Let us copy it. 

The equations which express the horizontal acceleration, 

»     $+*&+"# + *%*■**"% 
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The equation of continuity 

(6) 5/ r"' 2>lf    '   dj 

The equation of the adiabatic process 

(?) if + «$  + v^ +w 0=o 

Finally, the relation between 0     and the gsopotential is found from the: 

Hydrostatic equation and the equation of state 

es) $ =- ji 1 p'-*  il      ( A- C*z-&3S 
of 

In connection with this, that the angle between the directed normal; 

to the isobaric surface_and the vertical is very small, then the quantitic 

■ zl.   '-L j-/ etc., which appear in equations (4)-(6), differ qu 

little from those same values, determined in the system of variables Oj * 
all 

The relative difference between, for example, the values of  ."V    , 

calculated under constant J    or under constant  a   usually do not 

exceed 3 - 5%.      However the presence of these small differences (and also 

of course, that  J yj fi differs from -<~^      ) leads to appreciable 
is 

simplification of the form of the continuity equation, from which the 

/ rt'P small quantity  /" rr£.  is eliminated. 

It follows to note, that changes, under -ehe indicated substitution 

of variable values of the derivatives with respect to time and the horizoi 

direction, of the potential temperature are significantly larger than the 

corresponding values of the velocity components, and could reach 10-2,0%, 

This fact is found in direct connection with the conclusion, mentioned 
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above, concerning the variability of the temperature (also the potential 

temperature) and the wind in various directions. 

4. Let us not,/ construct a table, analogous to [ 6]_, of the orders of 

the quantities,^appearing in equations (4)-(8). For this we can profit 

partially by the data of the work of [6], introducing the corresponding 

conversion factors to the new variables. Some new results were obtained 

by means of the treatment of actual data. Tables land la contain the 

mean square deviations from the standard derivatives (divided differences) 

of the quantities a, </, fi     &,    iV and     .CLJ, = f£  ~'j~' 

(derivatives determined for constant /'   ) for the layer from 0.5 up to 

6-7 km.' The space interval for the determination of the horizontal 

differences of meteorological quantities was chosen equal to AS— Ö'OOA ■ 

m0m}   the time;? interval equal to A7^--  12 hrs, and the interval throuj 

the variable /' A -f ~ CJ, Z$~* 0®M 

In numerous cases the norm (the climatic value, averaged with respect 

to time and space) of the derivative proved to be significantly less, 

than its_standard. However, the systematic increase of the geopotential 

and potential temperature with the drop in pressure leads, for large scale 

motion, to that conclusion,that the norms of the derivatives of these 

elements with respect to  ^        significantly surpass the standards of 

those same quantities.  It is clear, that in the cases mentioned, the 

characteristic meaning of the quantity appears to be its norm. The 

corresponding graphs of the tables contain two quantities: upward the 

standard, below the norm.  It follows to keep in mind that, owing to the 

geographic variability of the derivatives of meteorological elements, the 

mean value of the derivative, computed in a definite region and for a 

definite level (layer), can differ appreciably from the values, indicated 
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TABLE I 

Wd«rd»'derlvativt» (divided differences) of the horizontal velocity, geopotential 

and potential tsmperature 

J. 
0$ 

1 
Jt 

.itto' *\:2*tc 2 jt to 
* 

2" 

rtt 

z*fo"'J 

-/I 

)5*>/ 

WO 

./«? 

~£ 

zyi/O     \ZXfQ 
-® W/O- 

\~Jf $ */c 
zx/o ~to 

-? 

mi 

i /st4 

3*/a     \ M/i 

3//0 ~+ t 

/O 

•£AM,E I* 

:andard valu© of w, of tka canpomnt of vorticity JX{     »a* of thair derivatives 

ym v..«.«<y 

JL 
3* *f 

w jö'* 2X/0" */£. ZX/O' 
'It 

Z.5X/#"l~ 

~J\e Z/&'* 4X/0' 
-It 4MO~ 

! 
« 

te ix/a'* 

8a 



in the table." Nevertheless, from our data, the relative deviations of the 

local values of the derivative from.its tabular value, as a rule, do not 

exceed 30%. One can expect the greater discrepancies (from one-half up to 

double the tabular values) there, where the numerical factor 10 was not 

indicated in the power. ■ 

5. Let us apply the vorticity operation to the equation for 

horizontal acceleration; for that let us differentiate equation (5) with 

respect to )£■     and let us subtract from it (4). differentiated with respect 

to     if        .    After elementary calculations we find 

,9)   _££ *-*     äu ._  ^„.^il. 

In equation (9) the chief terms are underlined by the thick straight 

line and the terms of first order of smallness relative to the chief terms 

are underlined hy  the thin wavy line. Here the underlined conclusions 

calculated above are Cb-     and   J?        . However, an estimation of all 

the values could be obtained directly from the tables, if we consider, that 

by (6) 

From equation (9) it is clear, that due to the presence of the 

divergence ofthe horizontal velocity  -4S "7*~r7    >  fc^a quantity 

X "^ -fLj>        does not appear to De aa  invariant even in the first approxima 

tion. 

1/ It is obvious, that the first four terms of equation (9) could be 
presented in the form cL IPJ-JI   ) , in so far as j^     does not depend 
on ■&> x, f.      *      &l        tJ 



The attempt of Rossby to introduce the special invariant quantity — 

"the potential vorticity" is justified, as A. M. Obukhov [4] mentions, 

only for serious simplifying assumptions. The method of transition to an 

invariant quantity consists in the application of equation (9) at such a 

level, -where the divergence of the-horizontal velocity is .very small and 

could be neglected, which is also another assumption given for the first 

■time by Rossby. 

Re can show some difference of the standard values of   ,y- 

and  £ ß~j even by the mean data, given in table la. Actually, the 

standard value of  ^>»'    is  TX /^       ,  find the value of 

I jf        i*    3x'/o-'°      (for ys   /,zx /a*4]- 
which corresponds to latitude 55"). 

, * >7 , Ul-f 
If we look for the layer, in which the ratio Jt-  ~~2     •• j~t~ 

would be equal to 0.5 in the mean, then the quantity   Ji /--_//./'   ^n 

such a layer appears to be invariant with an accuracy to   £   * 

Let us note, that the so called "barotropic scheme" of the precalculation 

of pressure depends on the use of this quite approximate invariant. 

Now let us introduce the invariant of the first approximation from 

(9) and (7). For this let us neglect in (9) terms of the first order of 

smallness  ^ ^   —   $~  jj , let us replace  |~ -/- *£     1/ 

— ~j , and everywhere in the remaining terms let us replace the 

horizontal velocity components by their geostrophic values 

Estimating the order of the quantities in equations (4) and (5), 

we are satisfied, that 
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fca esesmtklly a quantity of order O      .    Therefore, when deducing the 

invariant or the first approximation the replacement of the actual wind 

by tha gaostrophic wind i3 coraplately natural. 

Sat  vlth accuracy to the first order of smallness 

(7a)    %+-«£+ yjf 4- w £f=0 

IM, us differentiate equation (7a) with respect to  T  . On the 

»treagth of (10) and (8) 

Ihf&refora, dasignating ^^jy =s?   p    ,  wa find 
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Further, let us divide (9a) by   £ f~ _/Z/    and present it in the 

form 

yA fJJ-JLj)   t jjKt/s-Jl,)    2J»Ui Jif)  ;v 2 & ( /^V) 2W 
(i2)   ^       *-^.r*       ^^/        ^"o/        -/y~'; 

Adding (11) and (12), we find 

)t 
(«) 

Thus,  the quantity     Jift P /• J;/t  (J-/~_fLjJ 

appear*invariant in the first approximation.    It is clear,  that one can 

say the earns about the quantity /£ •h^fl.t)   ^¥ 

6.    To obtain the invariant of tha second approximation let us introduce 

the following substitution of variables 

(14) t****      / <V  ~ ? 

Let us construct completely, for example, the calculations, connected 

with the substitutions (14) for equation (7). Let 0   (f, X>y>   f) 

in the new variables be presented as a function of f {■£-  t, '{,   f) 

Then 
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(15) 4ß \r   *r J-iJ - if J- i& 

?r ~    ,r    2fJ~ •>' ~-if 4^4 
? ' 7] *•>}■* r*   *t     ** 

2fX i-£ + 2fJL if 

&-if+ £f-4*4- -T^T? 
7 

Hence we obtain that 

'+{*' 
//• t(f) if V- (V 

Since the characteristic values of  Ö-* =■ — —— 

(  £ is the radius of the earth) i« /.ff*  JO ~"    >  'hen the "tloS 

of the quantities, underlined by a wavy line, to the wind velocity present 

a value of the order £ * - £ * • Neglecting them and using (A), (5), 

(10), we obtain 

at 
*F+.Ujlf+*,<£-+x>r 

#r 
rj y<{ •>j 

or replacing the temporary designation  /=" by  &     (but &     has 

already been expressed as a function of the new variables) we shall have 
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Now 1st us substitute into equation (9) £%   7^fj7~~      fj>. 

fr<m the continuity equation 

(17) 

As before small teraa of the firet order have been underlined by a 

wavy line. 

An&legous%<rt(16) 4» 

In order to transform fcbe rest of the terms of (17) to the new 

variables, let us introduce the temporary designations 

Than wa have 

l& -   ? VV    ) W JL )£     ^w JL 2d 

(18)       JiL i*,,. J-KhZPfiiZ 

-14* 



Further it follows to express, with the aid of the same such relatior 

all the derivatives of   (0        and |/   in the new variables and put the:; 

into equation (18). However, since for calculations we shall neglect all 

quantities of .the order  C   in comparison with unity, the calculations 

should be essentially simplified. As  ~7~ j'k  /   £   c?y£ etc., <*. 

considered themselves as quantities of the order  C-  , we can rewrite t>, 

latter equation (18) thus: 

r/. . >? 

Here   C \ ?5 /  denotes the quantity of the order    O   relatr 

to the horizontal, derivative of the quantity  yV 

Then we have 

(i9)      -^fj+y/ft'    V >i'   '   ti {j:>>fJ 

0 i -jw iLüf 
The meaning of the designation Q   ( j 5 j .f  / is clear from th 

proceeding.  Since the term in brackets has the order C-   relative to 

the chief terms of equation (17), than with an accuracy to a value of the 
p Z \ [/£/ 

order   O   we can replace the left side of (19) by v   ■-—?,        .    Tumi 

then to the entry in (17) the quantity  f]_.    TT-* , we are easily 

convinced, that in this case for the expression  & /V-5  *n c^e new 

variables still less accuracy is needed and it is possible to write 
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-A/ »'/   ~ -^. if 

t     Collecting all the results obtained, we bring equation (17) to the 

form 

(20)    Jt + Uj y -    t   +fy<?s( H 

" - 'U+Jli) W~° 
Hera the old designation |V- ^  hasten restored, but it follows 

to remember, that now y/  is presented as a function of ~t> j , '('  / - 

Let u* transform aquation (8) to the new variables. We have ( f        in 

the new variables we «hall designate by fi      ) 

(21) e --ft*     iw    */ 

She gaoatrophic relation« (10) in the new variables take the form 

/ ^/>   -f ^y- -^^ /^ 

Then with accuracy to tha second order of smallnes« we can persent (22) 

in the for« 
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It is not difficult to verify, that carrying out the same such 

transformations in (21), we obtain the quite accurate expression 

A      ct*+yL 
, ,,->. 2 it* -r ) 

t)0/ ~d$/ 
If we find   /dt       or   /M       from (24), then the error will 

have the. second order of smailness. 

How let us differentiate equation (16) with respect to ^ 

on the strength of (23) and (24) the quantity . 

The 

Mf2ß L w? 2& 

is equal to zero, and we find 

(25)  \jt+uni+"t fiTwff)rf+-Tj >j-o 

From (20) and (25) we obtain 

<*» {it + 4>j* 14 + * * )lA UfJLf) ^ 5/- 

So, again wa obtained the invariant   (yl  t~ —fJ-f/  ^~~? 

the variables  t j j /A/   v     anf^ ^or t*ie replacement of the' actual 

velocities Ut   V       by the geostrophic relations. The characteristic of 

the conservation of this quantity is fulfilled with considerable accuracy. 

From the deduction it follows, that this accuracy, under normal 

conditions whan the flux, of heat and the amount of turbulent transfer of 

the motion in the free atmosphere is small, is completely sufficient for 

all kinds of practical calculations. 

but i; 



In conclusion I would like to express thanks- to I. A. Kibel for the 

valuable joint discussions on the first stage of carrying out the present- 

work. 
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